Librarian View
LEADER 22683cam a2200409 a 4500
001
3807714
005
20110927155400.0
008
100520s2010 maua b 001 0 eng
010
a| 2010020912
020
a| 9780262232586 (hardcover : alk. paper)
020
a| 0262232588 (hardcover : alk. paper)
035
a| 3807714
035
a| ocn627701062
035
a| (OCoLC)627701062
040
a| DLC
c| DLC
d| C#P
d| BWX
d| YDXCP
d| NLGGC
d| CDX
d| NhCcYME
049
a| JHEE
a| JHSM
050
0
0
a| HB139
b| .W663 2010
082
0
0
a| 330.01/5195
2| 22
084
a| 83.03
2| bcl
100
1
a| Wooldridge, Jeffrey M.,
d| 1960-
245
1
0
a| Econometric analysis of cross section and panel data /
c| Jeffrey M. Wooldridge.
250
a| 2nd ed.
260
a| Cambridge, Mass. :
b| MIT Press,
c| c2010.
300
a| xxvii, 1064 p. :
b| ill. ;
c| 24 cm.
504
a| Includes bibliographical references (p. [1025]-1044) and index.
505
0
0
g| I.
t| INTRODUCTION AND BACKGROUND --
g| 1.
t| Introduction --
g| 1.1.
t| Causal Relationships and Ceteris Paribus Analysis --
g| 1.2.
t| Stochastic Setting and Asymptotic Analysis --
g| 1.2.1.
t| Data Structures --
g| 1.2.2.
t| Asymptotic Analysis --
g| 1.3.
t| Some Examples --
g| 1.4.
t| Why Not Fixed Explanatory Variables? --
g| 2.
t| Conditional Expectations and Related Concepts in Econometrics --
g| 2.1.
t| Role of Conditional Expectations in Econometrics --
g| 2.2.
t| Features of Conditional Expectations --
g| 2.2.1.
t| Definition and Examples --
g| 2.2.2.
t| Partial Effects, Elasticities, and Semielasticities --
g| 2.2.3.
t| Error Form of Models of Conditional Expectations --
g| 2.2.4.
t| Some Properties of Conditional Expectations --
g| 2.2.5.
t| Average Partial Effects --
g| 2.3.
t| Linear Projections --
t| Problems --
t| Appendix 2A --
g| 2.A.1.
t| Properties of Conditional Expectations --
g| 2.A.2.
t| Properties of Conditional Variances and Covariances --
g| 2.A.3.
t| Properties of Linear Projections --
g| 3.
t| Basic Asymptotic Theory --
g| 3.1.
t| Convergence of Deterministic Sequences --
g| 3.2.
t| Convergence in Probability and Boundedness in Probability --
g| 3.3.
t| Convergence in Distribution --
g| 3.4.
t| Limit Theorems for Random Samples --
g| 3.5.
t| Limiting Behavior of Estimators and Test Statistics --
g| 3.5.1.
t| Asymptotic Properties of Estimators --
g| 3.5.2.
t| Asymptotic Properties of Test Statistics --
t| Problems --
g| II.
t| LINEAR MODELS --
g| 4.
t| Single-Equation Linear Model and Ordinary Least Squares Estimation --
g| 4.1.
t| Overview of the Single-Equation Linear Model --
g| 4.2.
t| Asymptotic Properties of Ordinary Least Squares --
g| 4.2.1.
t| Consistency --
g| 4.2.2.
t| Asymptotic Inference Using Ordinary Least Squares --
g| 4.2.3.
t| Heteroskedasticity-Robust Inference --
g| 4.2.4.
t| Lagrange Multiplier (Score) Tests --
g| 4.3.
t| Ordinary Least Squares Solutions to the Omitted Variables Problem --
g| 4.3.1.
t| Ordinary Least Squares Ignoring the Omitted Variables --
g| 4.3.2.
t| Proxy Variable-Ordinary Least Squares Solution --
g| 4.3.3.
t| Models with Interactions in Unobservables: Random Coefficient Models --
g| 4.4.
t| Properties of Ordinary Least Squares under Measurement Error --
g| 4.4.1.
t| Measurement Error in the Dependent Variable --
g| 4.4.2.
t| Measurement Error in an Explanatory Variable --
t| Problems --
g| 5.
t| Instrumental Variables Estimation of Single-Equation Linear Models --
g| 5.1.
t| Instrumental Variables and Two-Stage Least Squares --
g| 5.1.1.
t| Motivation for Instrumental Variables Estimation --
g| 5.1.2.
t| Multiple Instruments: Two-Stage Least Squares --
g| 5.2.
t| General Treatment of Two-Stage Least Squares --
g| 5.2.1.
t| Consistency --
g| 5.2.2.
t| Asymptotic Normality of Two-Stage Least Squares --
g| 5.2.3.
t| Asymptotic Efficiency of Two-Stage Least Squares --
g| 5.2.4.
t| Hypothesis Testing with Two-Stage Least Squares --
g| 5.2.5.
t| Heteroskedasticity-Robust Inference for Two-Stage Least Squares --
g| 5.2.6.
t| Potential Pitfalls with Two-Stage Least Squares --
g| 5.3.
t| IV Solutions to the Omitted Variables and Measurement Error Problems --
g| 5.3.1.
t| Leaving the Omitted Factors in the Error Term --
g| 5.3.2.
t| Solutions Using Indicators of the Unobservables --
t| Problems --
g| 6.
t| Additional Single-Equation Topics --
g| 6.1.
t| Estimation with Generated Regressors and Instruments --
g| 6.1.1.
t| Ordinary Least Squares with Generated Regressors --
g| 6.1.2.
t| Two-Stage Least Squares with Generated Instruments --
g| 6.1.3.
t| Generated Instruments and Regressors --
g| 6.2.
t| Control Function Approach to Endogeneity --
g| 6.3.
t| Some Specification Tests --
g| 6.3.1.
t| Testing for Endogeneity --
g| 6.3.2.
t| Testing Overidentifying Restrictions --
g| 6.3.3.
t| Testing Functional Form --
g| 6.3.4.
t| Testing for Heteroskedasticity --
g| 6.4.
t| Correlated Random Coefficient Models --
g| 6.4.1.
t| When Is the Usual IV Estimator Consistent? --
g| 6.4.2.
t| Control Function Approach --
g| 6.5.
t| Pooled Cross Sections and Difference-in-Differences Estimation --
g| 6.5.1.
t| Pooled Cross Sections over Time --
g| 6.5.2.
t| Policy Analysis and Difference-in-Differences Estimation --
t| Problems --
t| Appendix 6A --
g| 7.
t| Estimating Systems of Equations by Ordinary Least Squares and Generalized Least Squares --
g| 7.1.
t| Introduction --
g| 7.2.
t| Some Examples --
g| 7.3.
t| System Ordinary Least Squares Estimation of a Multivariate Linear System --
g| 7.3.1.
t| Preliminaries --
g| 7.3.2.
t| Asymptotic Properties of System Ordinary Least Squares --
g| 7.3.3.
t| Testing Multiple Hypotheses --
g| 7.4.
t| Consistency and Asymptotic Normality of Generalized Least Squares --
g| 7.4.1.
t| Consistency --
g| 7.4.2.
t| Asymptotic Normality --
g| 7.5.
t| Feasible Generalized Least Squares --
g| 7.5.1.
t| Asymptotic Properties --
g| 7.5.2.
t| Asymptotic Variance of Feasible Generalized Least Squares under a Standard Assumption --
g| 7.5.3.
t| Properties of Feasible Generalized Least Squares with (Possibly Incorrect) Restrictions on the Unconditional Variance Matrix --
g| 7.6.
t| Testing the Use of Feasible Generalized Least Squares --
g| 7.7.
t| Seemingly Unrelated Regressions, Revisited --
g| 7.7.1.
t| Comparison between Ordinary Least Squares and Feasible Generalized Least Squares for Seemingly Unrelated Regressions Systems --
g| 7.7.2.
t| Systems with Cross Equation Restrictions --
g| 7.7.3.
t| Singular Variance Matrices in Seemingly Unrelated Regressions Systems --
g| 7.8.
t| Linear Panel Data Model, Revisited --
g| 7.8.1.
t| Assumptions for Pooled Ordinary Least Squares --
g| 7.8.2.
t| Dynamic Completeness --
g| 7.8.3.
t| Note on Time Series Persistence --
g| 7.8.4.
t| Robust Asymptotic Variance Matrix --
g| 7.8.5.
t| Testing for Serial Correlation and Heteroskedasticity after Pooled Ordinary Least Squares --
g| 7.8.6.
t| Feasible Generalized Least Squares Estimation under Strict Exogeneity --
t| Problems --
g| 8.
t| System Estimation by Instrumental Variables --
g| 8.1.
t| Introduction and Examples --
g| 8.2.
t| General Linear System of Equations --
g| 8.3.
t| Generalized Method of Moments Estimation --
g| 8.3.1.
t| General Weighting Matrix --
g| 8.3.2.
t| System Two-Stage Least Squares Estimator --
g| 8.3.3.
t| Optimal Weighting Matrix --
g| 8.3.4.
t| Generalized Method of Moments Three-Stage Least Squares Estimator --
g| 8.4.
t| Generalized Instrumental Variables Estimator --
g| 8.4.1.
t| Derivation of the Generalized Instrumental Variables Estimator and Its Asymptotic Properties --
g| 8.4.2.
t| Comparison of Generalized Method of Moment, Generalized Instrumental Variables, and the Traditional Three-Stage Least Squares Estimator --
g| 8.5.
t| Testing Using Generalized Method of Moments --
g| 8.5.1.
t| Testing Classical Hypotheses --
g| 8.5.2.
t| Testing Overidentification Restrictions --
g| 8.6.
t| More Efficient Estimation and Optimal Instruments --
g| 8.7.
t| Summary Comments on Choosing an Estimator --
t| Problems --
g| 9.
t| Simultaneous Equations Models --
g| 9.1.
t| Scope of Simultaneous Equations Models --
g| 9.2.
t| Identification in a Linear System --
g| 9.2.1.
t| Exclusion Restrictions and Reduced Forms --
g| 9.2.2.
t| General Linear Restrictions and Structural Equations --
g| 9.2.3.
t| Unidentified, Just Identified, and Overidentified Equations --
g| 9.3.
t| Estimation after Identification --
g| 9.3.1.
t| Robustness-Efficiency Trade-off --
g| 9.3.2.
t| When Are 2SLS and 3SLS Equivalent? --
g| 9.3.3.
t| Estimating the Reduced Form Parameters --
g| 9.4.
t| Additional Topics in Linear Simultaneous Equations Methods --
g| 9.4.1.
t| Using Cross Equation Restrictions to Achieve Identification --
g| 9.4.2.
t| Using Covariance Restrictions to Achieve Identification --
g| 9.4.3.
t| Subtleties Concerning Identification and Efficiency in Linear Systems --
g| 9.5.
t| Simultaneous Equations Models Nonlinear in Endogenous Variables --
g| 9.5.1.
t| Identification --
g| 9.5.2.
t| Estimation --
g| 9.5.3.
t| Control Function Estimation for Triangular Systems --
g| 9.6.
t| Different Instruments for Different Equations --
t| Problems --
g| 10.
t| Basic Linear Unobserved Effects and Explanatory Variables --
g| 10.1.
t| Motivation: Omitted Variables Problem --
g| 10.2.
t| Assumptions about the Unobserved Effects and Explanatory Variables --
g| 10.2.1.
t| Random or Fixed Effects? --
g| 10.2.2.
t| Strict Exogeneity Assumptions on the Explanatory Variables --
g| 10.2.3.
t| Some Examples of Unobserved Effects Panel Data Models --
g| 10.3.
t| Estimating Unobserved Effects Models by Pooled Ordinary Least Squares --
g| 10.4.
t| Random Effects Methods --
g| 10.4.1.
t| Estimation and Inference under the Basic Random Effects Assumptions --
g| 10.4.2.
t| Robust Variance Matrix Estimator --
g| 10.4.3.
t| General Feasible Generalized Least Squares Analysis --
g| 10.4.4.
t| Testing for the Presence of an Unobserved Effect --
g| 10.5.
t| Fixed Effects Methods --
g| 10.5.1.
t| Consistency of the Fixed Effects Estimator --
g| 10.5.2.
t| Asymptotic Inference with Fixed Effects --
g| 10.5.3.
t| Dummy Variable Regression --
g| 10.5.4.
t| Serial Correlation and the Robust Variance Matrix Estimator --
g| 10.5.5.
t| Fixed Effects Generalized Least Squares --
g| 10.5.6.
t| Using Fixed Effects Estimation for Policy Analysis --
g| 10.6.
t| First Differencing Methods --
g| 10.6.1.
t| Inference --
g| 10.6.2.
t| Robust Variance Matrix --
g| 10.6.3.
t| Testing for Serial Correlation --
g| 10.6.4.
t| Policy Analysis Using First Differencing --
g| 10.7.
t| Comparison of Estimators --
g| 10.7.1.
t| Fixed Effects versus First Differencing --
g| 10.7.2.
t| Relationship between the Random Effects and Fixed Effects Estimators --
g| 10.7.3.
t| Hausman Test Comparing Random Effects and Fixed Effects Estimators --
t| Problems --
g| 11.
t| More Topics in Linear Unobserved Effects Models --
g| 11.1.
t| Generalized Method of Moments Approaches to the Standard Linear Unobserved Effects Model --
g| 11.1.1.
t| Equivalance between GMM 3SLS and Standard Estimators --
g| 11.1.2.
t| Chamberlain's Approach to Unobserved Effects Models --
g| 11.2.
t| Random and Fixed Effects Instrumental Variables Methods --
g| 11.3.
t| Hausman and Taylor-Type Models --
g| 11.4.
t| First Differencing Instrumental Variables Methods --
g| 11.5.
t| Unobserved Effects Models with Measurement Error --
g| 11.6.
t| Estimation under Sequential Exogeneity --
g| 11.6.1.
t| General Framework --
505
0
0
a| Contents note continued:
g| 11.6.2.
t| Models with Lagged Dependent Variables --
g| 11.7.
t| Models with Individual-Specific Slopes --
g| 11.7.1.
t| Random Trend Model --
g| 11.7.2.
t| General Models with Individual-Specific Slopes --
g| 11.7.3.
t| Robustness of Standard Fixed Effects Methods --
g| 11.7.4.
t| Testing for Correlated Random Slopes --
t| Problems --
g| III.
t| GENERAL APPROACHES TO NONLINEAR ESTIMATION --
g| 12.
t| M-Estimation, Nonlinear Regression, and Quantile Regression --
g| 12.1.
t| Introduction --
g| 12.2.
t| Identification, Uniform Convergence, and Consistency --
g| 12.3.
t| Asymptotic Normality --
g| 12.4.
t| Two-Step M-Estimators --
g| 12.4.1.
t| Consistency --
g| 12.4.2.
t| Asymptotic Normality --
g| 12.5.
t| Estimating the Asymptotic Variance --
g| 12.5.1.
t| Estimation without Nuisance Parameters --
g| 12.5.2.
t| Adjustments for Two-Step Estimation --
g| 12.6.
t| Hypothesis Testing --
g| 12.6.1.
t| Wald Tests --
g| 12.6.2.
t| Score (or Lagrange Multiplier) Tests --
g| 12.6.3.
t| Tests Based on the Change in the Objective Function --
g| 12.6.4.
t| Behavior of the Statistics under Alternatives --
g| 12.7.
t| Optimization Methods --
g| 12.7.1.
t| Newton-Raphson Method --
g| 12.7.2.
t| Berndt, Hall, Hall, and Hausman Algorithm --
g| 12.7.3.
t| Generalized Gauss-Newton Method --
g| 12.7.4.
t| Concentrating Parameters out of the Objective Function --
g| 12.8.
t| Simulation and Resampling Methods --
g| 12.8.1.
t| Monte Carlo Simulation --
g| 12.8.2.
t| Bootstrapping --
g| 12.9.
t| Multivariate Nonlinear Regression Methods --
g| 12.9.1.
t| Multivariate Nonlinear Least Squares --
g| 12.9.2.
t| Weighted Multivariate Nonlinear Least Squares --
g| 12.10.
t| Quantile Estimation --
g| 12.10.1.
t| Quantiles, the Estimation Problem, and Consistency --
g| 12.10.2.
t| Asymptotic Inference --
g| 12.10.3.
t| Quantile Regression for Panel Data --
t| Problems --
g| 13.
t| Maximum Likelihood Methods --
g| 13.1.
t| Introduction --
g| 13.2.
t| Preliminaries and Examples --
g| 13.3.
t| General Framework for Conditional Maximum Likelihood Estimation --
g| 13.4.
t| Consistency of Conditional Maximum Likelihood Estimation --
g| 13.5.
t| Asymptotic Normality and Asymptotic Variance Estimation --
g| 13.5.1.
t| Asymptotic Normality --
g| 13.5.2.
t| Estimating the Asymptotic Variance --
g| 13.6.
t| Hypothesis Testing --
g| 13.7.
t| Specification Testing --
g| 13.8.
t| Partial (or Pooled) Likelihood Methods for Panel Data --
g| 13.8.1.
t| Setup for Panel Data --
g| 13.8.2.
t| Asymptotic Inference --
g| 13.8.3.
t| Inference with Dynamically Complete Models --
g| 13.9.
t| Panel Data Models with Unobserved Effects --
g| 13.9.1.
t| Models with Strictly Exogenous Explanatory Variables --
g| 13.9.2.
t| Models with Lagged Dependent Variables --
g| 13.10.
t| Two-Step Estimators Involving Maximum Likelihood --
g| 13.10.1.
t| Second-Step Estimator Is Maximum Likelihood Estimator --
g| 13.10.2.
t| Surprising Efficiency Result When the First-Step Estimator Is Conditional Maximum Likelihood Estimator --
g| 13.11.
t| Quasi-Maximum Likelihood Estimation --
g| 13.11.1.
t| General Misspecification --
g| 13.11.2.
t| Model Selection Tests --
g| 13.11.3.
t| Quasi-Maximum Likelihood Estimation in the Linear Exponential Family --
g| 13.11.4.
t| Generalized Estimating Equations for Panel Data --
t| Problems --
t| Appendix 13A --
g| 14.
t| Generalized Method of Moments and Minimum Distance Estimation --
g| 14.1.
t| Asymptotic Properties of Generalized Method of Moments --
g| 14.2.
t| Estimation under Orthogonality Conditions --
g| 14.3.
t| Systems of Nonlinear Equations --
g| 14.4.
t| Efficient Estimation --
g| 14.4.1.
t| General Efficiency Framework --
g| 14.4.2.
t| Efficiency of Maximum Likelihood Estimator --
g| 14.4.3.
t| Efficienct Choice of Instruments under Conditional Moment Restrictions --
g| 14.5.
t| Classical Minimum Distance Estimation --
g| 14.6.
t| Panel Data Applications --
g| 14.6.1.
t| Nonlinear Dynamic Models --
g| 14.6.2.
t| Minimum Distance Approach to the Unobserved Effects Model --
g| 14.6.3.
t| Models with Time-Varying Coefficients on the Unobserved Effects --
t| Problems --
t| Appendix 14A --
g| IV.
t| NONLINEAR MODELS AND RELATED TOPICS --
g| 15.
t| Binary Response Models --
g| 15.1.
t| Introduction --
g| 15.2.
t| Linear Probability Model for Binary Response --
g| 15.3.
t| Index Models for Binary Response: Probit and Logit --
g| 15.4.
t| Maximum Likelihood Estimation of Binary Response Index Models --
g| 15.5.
t| Testing in Binary Response Index Models --
g| 15.5.1.
t| Testing Multiple Exclusion Restrictions --
g| 15.5.2.
t| Testing Nonlinear Hypotheses about β --
g| 15.5.3.
t| Tests against More General Alternatives --
g| 15.6.
t| Reporting the Results for Probit and Logit --
g| 15.7.
t| Specification Issues in Binary Response Models --
g| 15.7.1.
t| Neglected Heterogeneity --
g| 15.7.2.
t| Continuous Endogenous Explanatory Variables --
g| 15.7.3.
t| Binary Endogenous Explanatory Variable --
g| 15.7.4.
t| Heteroskedasticity and Nonnormality in the Latent Variable Model --
g| 15.7.5.
t| Estimation under Weaker Assumptions --
g| 15.8.
t| Binary Response Models for Panel Data --
g| 15.8.1.
t| Pooled Probit and Logit --
g| 15.8.2.
t| Unobserved Effects Probit Models under Strict Exogeneity --
g| 15.8.3.
t| Unobserved Effects Logit Models under Strict Exogeneity --
g| 15.8.4.
t| Dynamic Unobserved Effects Models --
g| 15.8.5.
t| Probit Models with Heterogeneity and Endogenous Explanatory Variables --
g| 15.8.6.
t| Semiparametric Approaches --
t| Problems --
g| 16.
t| Multinomial and Ordered Response Models --
g| 16.1.
t| Introduction --
g| 16.2.
t| Multinomial Response Models --
g| 16.2.1.
t| Multinomial Logit --
g| 16.2.2.
t| Probabilistic Choice Models --
g| 16.2.3.
t| Endogenous Explanatory Variables --
g| 16.2.4.
t| Panel Data Methods --
g| 16.3.
t| Ordered Response Models --
g| 16.3.1.
t| Ordered Logit and Ordered Probit --
g| 16.3.2.
t| Specification Issues in Ordered Models --
g| 16.3.3.
t| Endogenous Explanatory Variables --
g| 16.3.4.
t| Panel Data Methods --
t| Problems --
g| 17.
t| Corner Solution Responses --
g| 17.1.
t| Motivation and Examples --
g| 17.2.
t| Useful Expressions for Type I Tobit --
g| 17.3.
t| Estimation and Inference with the Type I Tobit Model --
g| 17.4.
t| Reporting the Results --
g| 17.5.
t| Specification Issues in Tobit Models --
g| 17.5.1.
t| Neglected Heterogeneity --
g| 17.5.2.
t| Endogenous Explanatory Models --
g| 17.5.3.
t| Heteroskedasticity and Nonnormality in the Latent Variable Model --
g| 17.5.4.
t| Estimating Parameters with Weaker Assumptions --
g| 17.6.
t| Two-Part Models and Type II Tobit for Corner Solutions --
g| 17.6.1.
t| Truncated Normal Hurdle Model --
g| 17.6.2.
t| Lognormal Hurdle Model and Exponential Conditional Mean --
g| 17.6.3.
t| Exponential Type II Tobit Model --
g| 17.7.
t| Two-Limit Tobit Model --
g| 17.8.
t| Panel Data Methods --
g| 17.8.1.
t| Pooled Methods --
g| 17.8.2.
t| Unobserved Effects Models under Strict Exogeneity --
g| 17.8.3.
t| Dynamic Unobserved Effects Tobit Models --
t| Problems --
g| 18.
t| Count, Fractional, and Other Nonnegative Responses --
g| 18.1.
t| Introduction --
g| 18.2.
t| Poisson Regression --
g| 18.2.1.
t| Assumptions Used for Poission Regression and Quantities of Interest --
g| 18.2.2.
t| Consistency of the Poisson QMLE --
g| 18.2.3.
t| Asymptotic Normality of the Poisson QMLE --
g| 18.2.4.
t| Hypothesis Testing --
g| 18.2.5.
t| Specification Testing --
g| 18.3.
t| Other Count Data Regression Models --
g| 18.3.1.
t| Negative Binomial Regression Models --
g| 18.3.2.
t| Binomial Regression Models --
g| 18.4.
t| Gamma (Exponential) Regression Model --
g| 18.5.
t| Endogeneity with an Exponential Regression Function --
g| 18.6.
t| Fractional Responses --
g| 18.6.1.
t| Exogenous Explanatory Variables --
g| 18.6.2.
t| Endogenous Explanatory Variables --
g| 18.7.
t| Panel Data Methods --
g| 18.7.1.
t| Pooled QMLE --
g| 18.7.2.
t| Specifying Models of Conditional Expectations with Unobserved Effects --
g| 18.7.3.
t| Random Effects Methods --
g| 18.7.4.
t| Fixed Effects Poisson Estimation --
g| 18.7.5.
t| Relaxing the Strict Exogeneity Assumption --
g| 18.7.6.
t| Fractional Response Models for Panel Data --
t| Problems --
g| 19.
t| Censored Data, Sample Selection, and Attrition --
g| 19.1.
t| Introduction --
g| 19.2.
t| Data Censoring --
g| 19.2.1.
t| Binary Censoring --
g| 19.2.2.
t| Interval Coding --
g| 19.2.3.
t| Censoring from Above and Below --
g| 19.3.
t| Overview of Sample Selection --
g| 19.4.
t| When Can Sample Selection Be Ignored? --
g| 19.4.1.
t| Linear Models: Estimation by OLS and 2SLS --
g| 19.4.2.
t| Nonlinear Models --
g| 19.5.
t| Selection on the Basis of the Response Variable: Truncated Regression --
g| 19.6.
t| Incidental Truncation: A Probit Selection Equation --
g| 19.6.1.
t| Exogenous Explanatory Variables --
g| 19.6.2.
t| Endogenous Explanatory Variables --
g| 19.6.3.
t| Binary Response Model with Sample Selection --
g| 19.6.4.
t| Exponential Response Function --
g| 19.7.
t| Incidental Truncation: A Tobit Selection Equation --
g| 19.7.1.
t| Exogenous Explanatory Variables --
g| 19.7.2.
t| Endogenous Explanatory Variables --
g| 19.7.3.
t| Estimating Structural Tobit Equations with Sample Selection --
g| 19.8.
t| Inverse Probability Weighting for Missing Data --
g| 19.9.
t| Sample Selection and Attrition in Linear Panel Data Models --
g| 19.9.1.
t| Fixed and Random Effects Estimation with Unbalanced Panels --
g| 19.9.2.
t| Testing and Correcting for Sample Selection Bias --
g| 19.9.3.
t| Attrition --
t| Problems --
g| 20.
t| Stratified Sampling and Cluster Sampling --
g| 20.1.
t| Introduction --
g| 20.2.
t| Stratified Sampling --
g| 20.2.1.
t| Standard Stratified Sampling and Variable Probability Sampling --
g| 20.2.2.
t| Weighted Estimators to Account for Stratification --
g| 20.2.3.
t| Stratification Based on Exogenous Variables --
g| 20.3.
t| Cluster Sampling --
g| 20.3.1.
t| Inference with a Large Number of Clusters and Small Cluster Sizes --
g| 20.3.2.
t| Cluster Samples with Unit-Specific Panel Data --
g| 20.3.3.
t| Should We Apply Cluster-Robust Inference with Large Group Sizes? --
g| 20.3.4.
t| Inference When the Number of Clusters Is Small --
g| 20.4.
t| Complex Survey Sampling --
t| Problems --
g| 21.
t| Estimating Average Treatment Effects --
g| 21.1.
t| Introduction --
g| 21.2.
t| Counterfactual Setting and the Self-Selection Problem --
g| 21.3.
t| Methods Assuming Ignorability (or Unconfoundedness) of Treatment --
g| 21.3.1.
t| Identification --
505
0
0
a| Contents note continued:
g| 21.3.2.
t| Regression Adjustment --
g| 21.3.3.
t| Propensity Score Methods --
g| 21.3.4.
t| Combining Regression Adjustment and Propensity Score Weighting --
g| 21.3.5.
t| Matching Methods --
g| 21.4.
t| Instrumental Variables Methods --
g| 21.4.1.
t| Estimating the Average Treatment Effect Using IV --
g| 21.4.2.
t| Correction and Control Function Approaches --
g| 21.4.3.
t| Estimating the Local Average Treatment Effect by IV --
g| 21.5.
t| Regression Discontinuity Designs --
g| 21.5.1.
t| Sharp Regression Discontinuity Design --
g| 21.5.2.
t| Fuzzy Regression Discontinuity Design --
g| 21.5.3.
t| Unconfoundedness versus the Fuzzy Regression Discontinuity --
g| 21.6.
t| Further Issues --
g| 21.6.1.
t| Special Considerations for Responses with Discreteness or Limited Range --
g| 21.6.2.
t| Multivalued Treatments --
g| 21.6.3.
t| Multiple Treatments --
g| 21.6.4.
t| Panel Data --
t| Problems --
g| 22.
t| Duration Analysis --
g| 22.1.
t| Introduction --
g| 22.2.
t| Hazard Functions --
g| 22.2.1.
t| Hazard Functions without Covariates --
g| 22.2.2.
t| Hazard Functions Conditional on Time-Invariant Covariates --
g| 22.2.3.
t| Hazard Functions Conditional on Time-Varying Covariates --
g| 22.3.
t| Analysis of Single-Spell Data with Time-Invariant Covariates --
g| 22.3.1.
t| Flow Sampling --
g| 22.3.2.
t| Maximum Likelihood Estimation with Censored Flow Data --
g| 22.3.3.
t| Stock Sampling --
g| 22.3.4.
t| Unobserved Heterogeneity --
g| 22.4.
t| Analysis of Grouped Duration Data --
g| 22.4.1.
t| Time-Invariant Covariates --
g| 22.4.2.
t| Time-Varying Covariates --
g| 22.4.3.
t| Unobserved Heterogeneity --
g| 22.5.
t| Further Issues --
g| 22.5.1.
t| Cox's Partial Likelihood Method for the Proportional Hazard Model --
g| 22.5.2.
t| Multiple-Spell Data --
g| 22.5.3.
t| Competing Risks Models --
t| Problems.
650
0
a| Econometrics
x| Asymptotic theory.
910
a| 3807714
b| Horizon bib#
938
a| YBP Library Services
b| YANK
n| 2492641
938
a| Coutts Information Services
b| COUT
n| 5629301
938
a| Blackwell Book Service
b| BBUS
n| 2492641
994
a| C0
b| JHE
991
a| HB139.W663 2010
f| lc
b| elc
c| c. 1
q| 0
i| 5802224
l| cwashas
m| ewashas
z| 36
991
a| HB139.W663 2010
f| lc
b| elc
c| c. 2
q| 0
i| 8823369
l| cwashas
m| ewashas
z| 0
991
a| HB139 .W66 2010
f| lc
b| slc
q| 0
i| 6043697
l| sbook
m| ssais
z| 37