Book , Print in English

Molecular biology : principles of genome function

Nancy L. Craig ... [et al.].
  • Oxford ; New York : Oxford University Press, 2010.
  • xli, 839 pages : colored illustrations; 28 cm.
  • Reserve Books - Welch Services Center, Welch Library Lower Level
    QU 450 M718 2010 c. 1 | Virtual Shelf Browse
    Transit
    Use the request button to place a hold on this item OR use BorrowDirect to request a different copy. For additional help, ask a library staff member.
  • SOM Course Reserve -- Welch Services Center, Welch Library Lower Level
    QU 450 M718 2010 c. 2 | Virtual Shelf Browse
    Available
    • 2 HR. CHECK OUT ONLY!
Subjects
Medical Subjects
Genre
  • Lehrbuch.
Contents
  • 1. Genomes and the flow of biological information
  • Introduction
  • 1.1. roots of biology
  • 1.2. genome: a working blueprint for life
  • 1.3. Bringing genes to life: gene expression
  • 1.4. Cellular infrastructure and gene expression
  • 1.5. Expression of the genome
  • 1.6. Evolution of the genome and the tree of life Summary
  • 2. Biological molecules
  • Introduction
  • 2.1. Atoms, molecules, and chemical bonds
  • 2.2. Life in aqueous solution
  • 2.3. Non-covalent interactions
  • 2.4. Nucleotides and nucleic acids
  • 2.5. structure of DNA
  • 2.6. Chemical properties of RNA
  • 2.7. RNA folding and structure
  • 2.8. RNA world and its role in the evolution of modern-day life
  • 2.9. Fundamentals of protein structure
  • 2.10. Protein folding
  • 2.11. Protein folds
  • 2.12. Sugars and carbohydrates
  • 2.13. Lipids
  • 2.14. Chemical modification in biological regulation
  • Summary
  • Further reading
  • 3. chemical basis of life
  • Introduction
  • 3.1. Thermodynamic rules in biological systems
  • 3.2. Binding equilibria and kinetics
  • 3.3. Binding processes in biology
  • 3.4. Enzyme catalysis
  • 3.5. Enzyme kinetics
  • Summary
  • Further reading
  • 4. Chromosome structure and function
  • Introduction
  • 4.1. Organization of chromosomes
  • 4.2. cell cycle and chromosome dynamics
  • 4.3. Packaging chromosomal DNA
  • 4.4. Variation in chromatin structure
  • 4.5. Covalent modifications of histones
  • 4.6. Nucleosome-remodeling complexes
  • 4.7. DNA methylation
  • 4.8. Boundary elements separate chromatin domains
  • 4.9. Elements required for chromosome function
  • 4.10. centromere
  • 4.11. telomere
  • 4.12. Chromosome architecture in the nucleus
  • Summary
  • Further reading
  • 5. cell cycle
  • Introduction
  • 5.1. Steps in the eukaryotic cell cycle
  • 5.2. Cyclins and cyclin-dependent kinases
  • 5.3. Regulation of Cdk activity
  • 5.4. Cell cycle regulation by Cdks
  • 5.5. Regulation of proteolysis by Cdks
  • 5.6. Checkpoints: intrinsic pathways that can halt the cell cycle
  • 5.7. Extrinsic regulators of cell cycle progression
  • 5.8. cell cycle and cancer
  • 5.9. bacterial cell cycle
  • Summary
  • Further reading
  • 6. DNA replication
  • Introduction
  • 6.1. Overview of DNA replication
  • DNA replication: core components
  • 6.2. DNA polymerases: structure and function
  • 6.3. DNA polymerases: fidelity and processivity
  • 6.4. Specialized polymerases
  • 6.5. DNA helicases: unwinding of the double helix
  • 6.6. sliding clamp and clamp loader
  • DNA replication: mechanism
  • 6.7. Origins and initiation of DNA replication
  • 6.8. Leading and lagging strand synthesis
  • 6.9. replication fork
  • 6.10. Termination of DNA replication
  • 6.11. end-replication problem and telomerase
  • 6.12. Chromatin replication
  • DNA replication: regulation
  • 6.13. Regulation of initiation of replication in E. coli
  • 6.14. Regulation of replication initiation in eukaryotes
  • Summary
  • Further reading
  • 7. Chromosome segregation
  • Introduction
  • 7.1. stages of mitosis
  • 7.2. Chromosome condensation and cohesion
  • 7.3. mitotic spindle
  • 7.4. Prometaphase and metaphase
  • 7.5. Anaphase: an irreversible step in chromosome segregation
  • 7.6. completion of mitosis and cytokinesis
  • 7.7. Meiosis: generating haploid gametes from diploid cells
  • 7.8. Chromosome segregation in bacteria
  • Summary
  • Further reading
  • 8. Transcription
  • Introduction
  • 8.1. Overview of transcription
  • Transcription: core components
  • 8.2. RNA polymerase core enzyme
  • Transcription: mechanism
  • 8.3. Promoter recognition in bacteria and eukaryotes
  • 8.4. Initiation of transcription and transition to an elongating complex
  • 8.5. Transcription elongation
  • 8.6. Transcription termination
  • Transcription: regulation
  • 8.7. Principles of transcription regulation
  • 8.8. DNA-binding domains in transcriptional regulator
  • 8.9. Mechanisms for regulating transcription in bacteria
  • 8.10. Competition between cl and Cro and the fate of bacteriophage lambda
  • 8.11. Mechanisms for modulating eukaryotic transcription
  • 8.12. Combinatorial regulation of eukaryotic transcription
  • 8.13. Signaling cascades and regulation of transcription
  • 8.14. Regulation of elongation and termination by RNA and proteins
  • 8.15. Transcriptional silencing
  • Summary
  • Further reading
  • 9. RNA processing
  • Introduction
  • 9.1. Overview of RNA processing
  • 9.2. tRNA and rRNA processing
  • 9.3. tRNA and rRNA nucleotide modifications
  • 9.4. mRNA capping and polyadenylation
  • 9.5. RNA splicing
  • 9.6. Eukaryotic mRNA splicing by the spliceosome
  • 9.7. Exon definition and alternative splicing
  • 9.8. RNA editing
  • 9.9. Degradation of normal RNAs
  • 9.10. Degradation of foreign and defective RNAs
  • 9.11. RNA-binding domains in proteins
  • Summary
  • Further reading
  • 10. Translation
  • Introduction
  • 10.1. Overview of translation
  • Translation: core components
  • 10.2. Transfer RNA and the genetic code
  • 10.3. Aminoacyl-tRNA synthetases
  • 10.4. Structure of the ribosome
  • Translation: mechanism
  • 10.5. translation cycle: the ribosome in action
  • 10.6. Protein factors critical to the translation cycle
  • 10.7. Translation initiation (mostly in bacteria)
  • 10.8. Translation initiation in eukaryotes
  • 10.9. Translation elongation: decoding, peptide bond formation, and translocation
  • 10.10. Translation termination and reinitiation
  • Translation: regulation
  • 10.11. Recoding: programmed stop codon read-through and frameshifting
  • 10.12. Antibiotics that target the ribosome
  • 10.13. Global regulation of initiation in bacteria and eukaryotes
  • 10.14. Regulation of initiation via the 5' UTR in bacteria and eukaryotes
  • 10.15. Regulation of translation via the 3' UTR in eukaryotes
  • 10.16. Viral corruption of the translational machinery
  • Summary
  • Further reading
  • 11. Protein modification and targeting
  • Introduction
  • 11.1. Chaperone-assisted protein folding
  • 11.2. Targeting of proteins throughout the cell
  • 11.3. Post-translational cleavage of the polypeptide chain
  • 11.4. Lipid modification of proteins
  • 11.5. Glycosylation of proteins
  • 11.6. Protein phosphorylation, acetylation, and methylation
  • 11.7. Protein oxidation, nitrosylation, and nitration
  • 11.8. Ubiquitination and sumoylation of proteins
  • 11.9. Protein degradation
  • Summary
  • Further reading
  • 12. Cellular responses to DNA damage
  • Introduction
  • 12.1. Types of DNA damage
  • 12.2. Post-replication mismatch repair
  • 12.3. Repair of DNA damage by direct reversal
  • 12.4. Repair of DNA damage by base excision repair
  • 12.5. Nucleotide excision repair of bulky lesions
  • 12.6. Translesion DNA synthesis
  • 12.7. DNA damage response
  • 12.8. DNA damage response in bacteria
  • 12.9. DNA damage response in eukaryotes
  • 12.10. DNA damage and cell death in mammalian cells
  • Summary
  • Further reading
  • 13. Repair of DNA double-strand breaks and homologous recombination
  • Introduction
  • 13.1. overview of DNA double-strand break repair and homologous recombination
  • 13.2. Double-strand break repair by non-homologous end joining
  • 13.3. Homology-directed repair of double-strand breaks
  • 13.4. Generation of single-stranded DNA by helicases and nucleases
  • 13.5. mechanism of DNA strand pairing and exchange
  • 13.6. Gene conversion through homology-directed repair
  • 13.7. Homologous recombination
  • 13.8. Repair of damaged replication forks by homology-directed repair
  • 13.9. Aberrant repair and recombination and chromosome rearrangements
  • Summary
  • Further reading
  • 14. Mobile DNA
  • Introduction
  • 14.1. Transposable elements: overview
  • 14.2. DNA-only transposons
  • 14.3. Mechanism of DNA-only cut-and-paste transposition reactions
  • 14.4. Mechanism of DNA-only nick-and-paste transposition reactions
  • 14.5. Cellular domestication of a DNA cut-and-paste transposase in adaptive immunity
  • 14.6. Retrotransposons
  • 14.7. LTR retrotransposons
  • 14.8. Non-LTR retrotransposons
  • 14.9. Control of transposition
  • 14.10. Conservative site-specific recombination: overview
  • 14.11. CSSR conversion of DNA dimers to monomers: single-protein systems
  • 14.12. CSSR conversion of DNA dimers to monomers: systems regulated by accessory proteins
  • 14.13. CSSR systems that control gene expression
  • Summary
  • Further reading
  • 15. Genomics and genetic variation
  • Introduction
  • 15.1. Genome sequences and sequencing projects
  • 15.2. Finding functions in a genome
  • 15.3. Evolutionary forces
  • 15.4. evolving genome
  • 15.5. Duplication and divergence of gene function
  • 15.6. Sequence comparisons
  • 15.7. Phenotypic variation
  • 15.8. Exploring evolution through genomics: examples from mammalian genomes
  • 15.9. Human genetic diseases
  • Summary
  • Further reading
  • 16. Tools and techniques in molecular biology
  • Introduction
  • 16.1. Model organisms
  • 16.2. Cultured cells and viruses
  • 16.3. Cloning and amplification of DNA and RNA sequences
  • 16.4. Genome manipulation
  • 16.5. Detection of biological molecules
  • 16.6. Separation and isolation of biological molecules
  • 16.7. Identification of biological molecules
  • 16.8. Detection of specific DNA sequences
  • 16.9. Detection of specific RNA molecules
  • 16.10. Detection of specific proteins --
  • Contents note continued: 16.11. Detection of interactions between molecules
  • 16.12. Imaging cells and molecules
  • 16.13. Molecular structure determination
  • 16.14. Obtaining and analyzing a complete genome sequence
  • 16.15. Mapping human disease genes
  • Summary
  • Online resources for genomics and model organisms.
Other information
  • Includes bibliographical references and index.
ISBN
  • 9780199562060 (alk. paper)
  • 0199562067 (alk. paper)
  • 9780199562053 (hbk.)
  • 0199562059
  • 9780199587940 (instructor ed.)
  • 0199587949 (instructor ed.)
Identifying numbers
  • LCCN: 2010010915
  • OCLC: 471822472
  • OCLC: 471822472

Virtual Shelf Browse

See similar material that would be shelved with this item, across all Hopkins libraries.

Browse