Book , Print in English

Organic structural spectroscopy

Joseph B. Lambert [and others].
  • Upper Saddle River, N.J. : Pearson Prentice Hall, ©2011.
  • 2nd ed.
  • xiii, 533 pages : illustrations ; 29 cm
Subjects
Summary
  • "Organic Structural Spectroscopy authoritatively presents the fundamentals of all four principal spectroscopic methods: nuclear magnetic resonance spectroscopy, mass spectrometry, infrared spectroscopy, and ultraviolet-visible spectroscopy."--Pub. desc.
Contents
  • note: ch. 1 Introduction to Structural Spectroscopy
  • 1-1. Spectroscopic Approach to Structure Determination
  • 1-2. Electromagnetic Spectrum
  • 1-3. Molecular Weight and Molecular Formula
  • 1-4. Structural Isomers and Stereoisomers
  • 1-5. Contributions of Different Forms of Spectroscopy
  • 1-5a. Nuclear Magnetic Resonance Spectroscopy
  • 1-5b. Mass Spectrometry
  • 1-5c. Vibrational Spectroscopy
  • 1-5d. Electronic Spectroscopy
  • Problems
  • pt. I Nuclear Magnetic Resonance Spectroscopy
  • ch. 2 Introduction
  • 2-1. Magnetic Properties of Nuclei
  • 2-2. Commonly Studied Nuclides
  • 2-3. Chemical Shift
  • 2-4. Excitation and Relaxation
  • 2-5. Pulsed Experiments
  • 2-6. Coupling Constant
  • 2-7. Quantification and Complex Splitting
  • 2-8. Dynamic Effects
  • 2-9. Spectra of Solids
  • 2-10. Experimental Methods
  • 2-10a. Spectrometer and the Sample
  • 2-10b. Optimizing the Signal
  • 2-10c. Spectral Parameters
  • Problems
  • Tips on Solving NMR Problems
  • Bibliography
  • ch. 3 Chemical Shift
  • 3-1. Factors That Influence Proton Shifts
  • 3-2. Proton Chemical Shifts and Structure
  • 3-2a. Saturated Aliphatics
  • 3-2b. Unsaturated Aliphatics
  • 3-2c. Aromatics
  • 3-2d. Protons on Oxygen and Nitrogen
  • 3-2e. Programs for Empirical Calculations
  • 3-3. Medium and Isotope Effects
  • 3-4. Factors That Influenc Carbon Shifts
  • 3-5. Carbon Chemical Shifts and Structure
  • 3-5a. Saturated Aliphatics
  • 3-5b. Unsaturated Compounds
  • 3-5c. Carbonyl Groups
  • 3-5d. Programs for Empirical Calculation
  • 3-6. Tables of Chemical Shifts
  • Problems
  • Further Tips on Solving NMR Problems
  • Bibliography
  • ch. 4 Coupling Constant
  • 4-1. First-Order Spectra
  • 4-2. Chemical and Magnetic Equivalence
  • 4-3. Signs and Mechanisms
  • 4-4. Couplings over One Bond
  • 4-5. Geminal Couplings
  • 4-6. Vicinal Couplings
  • 4-7. Long-Range Couplings
  • 4-8. Spectral Analysis
  • 4-9. Second-Order Spectra
  • 4-10. Tables of Coupling Constants
  • Problems
  • Bibliography
  • ch. 5 Further Topics in One-Dimensional NMR
  • 5-1. Spin-Latice and Spin-Spin Relaxation
  • 5-2. Reactions on the NMR Time Scale
  • 5-3. Multiple Resonance
  • 5-4. Nuclear Overhauser Effect
  • 5-5. Spectral Editing
  • 5-6. Sensitivity Enhancement
  • 5-7. Carbon Connectivity
  • 5-8. Phase Cycling, Composite Pulses, and Shaped Pulses
  • Problems
  • Bibliography
  • ch. 6 Two-Dimensional NMR Spectroscopy
  • 6-1. Proton-Proton Correlation Through J Coupling
  • 6-2. Proton-Heteronucleus Correlation
  • 6-3. Proton-Proton Correlation Through Space or Chemical Exchange
  • 6-4. Carbon-Carbon Correlation
  • 6-5. Higher Dimensions
  • 6-6. Pulsed Field Gradients
  • 6-7. Diffusion Ordered Spectroscopy
  • 6-8. Summary of Two-Dimensional Methods
  • Problems
  • Bibliography
  • pt. II Mass Spectrometry
  • ch. 7 Mass Spectrometry: Instrumentation
  • 7-1. Introduction
  • 7-2. Ionization
  • 7-2a. Electron Ionization
  • 7-2b. Chemical Ionization
  • 7-2c. Desorption Methods: FAB and MALDI
  • 7-2d. Electrospray Ionization (ESI)
  • 7-2e. Atmospheric Pressure Chemical Ionization (APCI)
  • 7-2f. Hybrid Methods
  • 7-3. Mass Analysis
  • 7-3a. Time-of-Flight Mass Analyzers
  • 7-3b. Ion Cyclotron Resonance (ICR) Traps: Fourier Transform Mass Spectrometry
  • 7-3c. Quadrupole Ion Trap Mass Analyzers
  • 7-3d. Quadrupole Mass Filters
  • 7-3e. Sector Mass Analyzers
  • 7-3f. Orbitrap Analyzers
  • 7-3g. Hybrid Instruments
  • 7-3h. Summary of Mass Analyzers
  • 7-4. Sample Preparation
  • 7-4a. GC/MS
  • 7-4b. LC/MS
  • 7-4c. Data from GC/MS and LC/MS Systems
  • 7-4d. Gel Separations
  • Worked Problems
  • Problems
  • Bibliography
  • ch. 8 Fragmentation and Ion Activation Methods
  • 8-1. Introduction
  • 8-2. Ion Energetics
  • 8-2a. Competing Pathways: Ion Stability
  • 8-2b. Competing Pathways: General Principles
  • 8-2c. Competing Pathways: Charge Localization
  • 8-2d. Competing Pathways: Internal Energies
  • 8-2e. Competing Pathways: Typical Fragments
  • 8-3. Fragmentation Patterns of Functional Groups
  • 8-4. Hydrocarbons
  • 8-4a. Alkanes and Alkenes
  • 8-4b. Aromatic Hydrocarbons
  • 8-5. Amines
  • 8-5a. Radical Cations of Amines
  • 8-5b. Protonated Amines
  • 8-6. Alcohols, Ethers, and Phenols
  • 8-6a. Radical Cations of Alcohols, Ethers, and Phenols
  • 8-6b. Protonated Alcohols and Ethers
  • 8-7. Alkyl and Aryl Halides
  • 8-8. Ketones and Aldehydes
  • 8-8a. Radical Cations of Ketones
  • 8-8b. Radical Cations of Aldehydes
  • 8-9. Carboxylic Acids and Derivatives
  • 8-9a. Carboxylic Acids
  • 8-9b. Esters
  • 8-9c. Amides
  • 8-9d. Nitriles
  • 8-10. Other Functional Groups
  • 8-10a. Nitro Compounds
  • 8-10b. Sulfur-Containing Functional Groups
  • 8-10c. Silanes
  • 8-11. Dissociation Methods and Tandem Mass Spectrometry
  • 8-11a. Collision-Induced Dissociation
  • 8-11b. Infrared Multi-photon Dissociation
  • 8-11c. Electron Capture/Transfer Dissociation
  • 8-11d. Dissociation of Metastable Ions
  • Worked Problems
  • Problems
  • Bibliography
  • ch. 9 Interpretation of Mass Spectra
  • 9-1. Introduction
  • 9-2. Analyte Mass Analysis
  • 9-2a. Molecular Ions
  • 9-2b. Exact Mass and Mass Defects
  • 9-2c. Isotope Patterns
  • 9-2d. Multiply Charged Ions
  • 9-3. Structures from Spectra
  • 9-3a. Structural Analysis 1
  • 9-3b. Structural Analysis 2
  • 9-3c. Structural Analysis 3
  • 9-3d. Structural Analysis 4
  • 9-4. Biopolymers
  • 9-4a. Peptides and Proteins
  • 9-4b. Other Biopolymers
  • Problems
  • Bibliography
  • ch. 10 Quantitative Applications
  • 10-1. Introduction
  • 10-2. Factors Controlling Mass Spectrometer Signal Intensities
  • 10-2a. Ionization Efficiency
  • 10-2b. Detection Efficiency
  • 10-3. Internal Standards and Relative Intensities
  • 10-4. Measuring Thermodynamic Properties with Mass Spectrometry
  • 10-4a. Gas-Phase Ion Chemistry
  • 10-4b. Gas-Phase Acidities and Basicities
  • 10-4c. Bond Dissociation Energies
  • 10-4d. Relative Condensed-Phase Association Constants
  • Problems
  • Bibliography
  • pt. III Vibrational Spectroscopy
  • ch. 11 Introduction to Infrared and Raman Spectroscopy
  • 11-1. Introduction
  • 11-2. Vibrations of Molecules
  • 11-3. Infrared and Raman Spectra
  • 11-4. Unis and Notation
  • 11-5. Infrared Spectroscopy: Dispersive and Fourier Transform Spectra
  • 11-5a. Dispersive Infrared Spectrometers
  • 11-5b. Fourier Transform Infrared Spectrometers
  • 11-6. Sampling Methods for Infrared Transmission Spectra
  • 11-6a. Support Materials
  • 11-6b. Liquids and Solutions
  • 11-6c. Solids
  • 11-7. Raman Spectroscopy
  • 11-8. Raman Sampling Methods
  • 11-8a. Liquids and Solutions
  • 11-8b. Solids
  • 11-9. Depolarization Measurements
  • 11-10. Infrared Reflection Spectroscopy
  • Problems
  • Bibliography
  • ch. 12 Group Frequencies
  • 12-1. Introduction
  • 12-2. Factors Affecting Group Frequencies
  • 12-2a. Symmetry
  • 12-2b. Mechanical Coupling of Vibrations
  • 12-2c. Fermi Resonance
  • 12-2d. Hydrogen Bonding
  • 12-2e. Ring Strain
  • 12-2f. Electronic Effects
  • 12-2g. Stereoisomerism
  • 12-2h. Tautomerism
  • 12-3. Infrared Group Frequencies
  • 12-4. Raman Group Frequencies
  • 12-5. Preliminary Analysis
  • 12-5a. Introduction
  • 12-5b. Hydrocarbons or Hydrocarbon Groups
  • 12-5c. Compounds Containing Oxygen
  • 12-5d. Compounds Containing Nitrogen
  • 12-6. CH Stretching Region (3340-2700 cm-1)
  • 12-6a. Introduction
  • 12-6b. Alkynes
  • 12-6c. Aromatic Compounds
  • 12-6d. Nonaromatic Unsaturated Compounds and Small Rings
  • 12-6e. Saturated Hydrocarbon Groups
  • 12-6f. Aldehydes
  • 12-7. Carbony1 Stretching Region (1850-1650 cm-1)
  • 12-7a. Introduction
  • 12-7b. Compounds Containing a Single C=O Group
  • 12-8. Aromatic Compounds
  • 12-8a. General
  • 12-8b. Substituted Aromatic Compounds
  • 12-9. Compounds Containing Methy1 Groups
  • 12-9a. General
  • 12-9b. Isopropyl and tert-Butyl Groups
  • 12-10. Compounds Containing Methylene Groups
  • 12-10a. Introduction
  • 12-10b. CH2 Bending (Scissoring)
  • 12-10c. CH2 Wagging and Twisting
  • 12-10d. CH2 Rocking
  • 12-10e. CH2 Wagging in Vinyl and Vinylidene Compounds
  • 12-10f. Relative Numbers of CH2 and CH3 Groups
  • 12-11. Unsaturated Compounds
  • 12-11a. C=C Stretching Mode
  • 12-11b. Cyclic Compounds
  • 12-11c. C [≡] C Stretching Mode
  • 12-11d. CH=and CH2 = Bending Modes
  • 12-12. Compounds Containing Oxygen
  • 12-12a. General
  • 12-12b. Ethers
  • 12-12c. Alcohols and Phenols
  • 12-12d. Carboxylic Acids and Anhydrides
  • 12-12e. Esters
  • 12-13. Compounds Containing Nitrogen
  • 12-13a. General
  • 12-13b. Amino Acids, Amines, and Amine Hydrohalides
  • 12-13c. Anilines
  • 12-13d. Nitriles
  • 12-13e. Nitro Compounds
  • 12-13f. Amides
  • 12-14. Compounds Containing Phosphorus and Sulfur
  • 12-14a. General
  • 12-14b. Phosphorus Acids and Esters
  • 12-14c. Compounds Containing C---S, S---S, and S---H Groups
  • 12-14d. Compounds Containing S=O Groups
  • 12-15. Heterocyclic Compounds
  • 12-15a. General
  • 12-15b. Aromatic Heterocycles
  • 12-15c. Pyrimidines and Purines
  • 12-15d. Five-Membered Ring Compounds
  • 12-15e. NH Stretching Bands
  • 12-16. Compounds Containing Halogens
  • 12-16a. General
  • 12-16b. CH2X Groups
  • 12-16c. Perhaloalkyl Groups
  • 12-16d. Aromatic Halogen Compounds --
  • Contents note continued: 12-17. Boron, Silicon, Tin, Lead, and Mercury Compounds
  • 12-18. Isotopically Labeled Compounds
  • 12-18a. Effect of 2H and 13C Isotopic Substitution on Stretching Modes
  • 12-18b. Effect of Deuterium Substitution on Bending Modes
  • 12-19. Using the Literature for Vibrational Spectra
  • Problems
  • Bibliography
  • pt. IV Electronic Absorption Spectroscopy
  • ch. 13 Introduction and Experimental Methods
  • 13-1. Introduction
  • 13-2. Measurement of Ultraviolet-Visible Light Absorption
  • 13-2a. Wavelength and λmax
  • 13-2b. Beer-Lambert-Bouguer Law and εmax
  • 13-2c. Shape of Absorption Curves: The Franck-Condon Principle
  • 13-2d. Solvent Effects and λmax Shifts
  • 13-3. Quantitative Measurements
  • 13-3a. Difference Spectroscopy
  • 13-3b. Deviations from Beer's Law
  • 13-3c. Isosbestic Points
  • 13-4. Electronic Transitions
  • 13-4a. Singlet and Triplet States
  • 13-4b. Classification of Electronic Transitions
  • 13-4c. Allowed and Forbidden Transitions
  • 13-5. Experimental Aspects
  • 13-5a. Solvents
  • 13-5b. Cells (Cuvettes) and Sample Preparation
  • 13-5c. Possible Sources of Error
  • Problems
  • Bibliography
  • ch. 14 Structural Analysis
  • 14-1. Isolated Chromophores
  • 14-1a. Carbonyl Group: Ketone and Aldehyde Absorption
  • 14-1b. Carbonyl Group: Acid, Ester, and Amide Absorption
  • 14-1c. Unconjugated Alkenes
  • 14-2. Conjugated Chromophores
  • 14-2a. Dienes and Polyenes
  • 14-2b. α, β-Unsaturated Carbonyl Groups
  • 14-3. Aromatic Compounds
  • 14-4. Important Naturally Occurring Chromophores
  • 14-4a. Amino Acids, Peptides, and Proteins
  • 14-4b. Nucleic Acids and Polynucleotides
  • 14-4c. Porphyrins and Metalloporphyrins
  • 14-5. Steric Effects
  • 14-6. Solvent Effects and Dynamic Equilibria
  • 14-7. Hydrogen Bonding Studies
  • 14-8. Homoconjugation
  • 14-9. Charge Transfer Bands
  • 14-10. Woodward-Fieser Rules
  • 14-10a. Conjugated Dienes and Polyenes
  • 14-10b. Conjugated Ketones, Aldehydes, Acids, and Esters
  • 14-11. Worked Problems and Examples
  • Problems
  • Bibliography
  • pt. V Integrated Problems
  • ch. 15 Integrated Problems.
Other information
  • Includes bibliographical references and index.
  • OCLC
ISBN
  • 9780321592569
  • 0321592565
Identifying numbers
  • LCCN: 2010031837
  • OCLC: 653842778
  • OCLC: 653842778