Book
,
Print
in
English
Statistics for business : decision making and analysis
Robert Stine, Dean Foster.
- Boston : Addison-Wesley, ©2013.
- 2nd ed.
- 1 volume(s). (various pagings) : colored illustrations; 29 cm. Accompanied by: + 1 CD-ROM (4 3/4 in.)
-
Washington LRC ReservesAvailable
- Subjects
- Contents
-
- pt. ONE Variation
- 1. Introduction
- 1.1. What Is Statistics?
- 1.2. Previews
- 2. Data
- 2.1. Data Tables
- 2.2. Categorical and Numerical Data
- 2.3. Recoding and Aggregation
- 2.4. Time Series
- 2.5. Further Attributes of Data
- Chapter Summary
- 3. Describing Categorical Data
- 3.1. Looking at Data
- 3.2. Charts of Categorical Data
- 3.3. Area Principle
- 3.4. Mode and Median
- Chapter Summary
- 4. Describing Numerical Data
- 4.1. Summaries of Numerical Variables
- 4.2. Histograms
- 4.3. Boxplot
- 4.4. Shape of a Distribution
- 4.5. Epilog
- Chapter Summary
- 5. Association between Categorical Variables
- 5.1. Contingency Tables
- 5.2. Lurking Variables and Simpson's Paradox
- 5.3. Strength of Association
- Chapter Summary
- 6. Association between Quantitative Variables
- 6.1. Scatterplots
- 6.2. Association in Scatterplots
- 6.3. Measuring Association
- 6.4. Summarizing Association with a Line
- 6.5. Spurious Correlation
- Chapter Summary
- Statistics In Action Financial Time Series
- Statistics In Action Executive Compensation
- pt. TWO Probability
- 7. Probability
- 7.1. From Data to Probability
- 7.2. Rules for Probability
- 7.3. Independent Events
- Chapter Summary
- 8. Conditional Probability
- 8.1. From Tables to Probabilities
- 8.2. Dependent Events
- 8.3. Organizing Probabilities
- 8.4. Order in Conditional Probabilities
- Chapter Summary
- 9. Random Variables
- 9.1. Random Variables
- 9.2. Properties of Random Variables
- 9.3. Properties of Expected Values
- 9.4. Comparing Random Variables
- Chapter Summary
- 10. Association between Random Variables
- 10.1. Portfolios and Random Variables
- 10.2. Joint Probability Distribution
- 10.3. Sums of Random Variables
- 10.4. Dependence between Random Variables
- 10.5. IID Random Variables
- 10.6. Weighted Sums
- Chapter Summary
- 11. Probability Models for Counts
- 11.1. Random Variables for Counts
- 11.2. Binomial Model
- 11.3. Properties of Binomial Random Variables
- 11.4. Poisson Model
- Chapter Summary
- 12. Normal Probability Model
- 12.1. Normal Random Variable
- 12.2. Normal Model
- 12.3. Percentiles
- 12.4. Departures from Normality
- Chapter Summary
- Statistics In Action Managing Financial Risk
- Statistics In Action Modeling Sampling Variation
- pt. THREE Inference
- 13. Samples and Surveys
- 13.1. Two Surprising Properties of Samples
- 13.2. Variation
- 13.3. Alternative Sampling Methods
- 13.4. Questions to Ask
- Chapter Summary
- 14. Sampling Variation and Quality
- 14.1. Sampling Distribution of the Mean
- 14.2. Control Limits
- 14.3. Using a Control Chart
- 14.4. Control Charts for Variation
- Chapter Summary
- 15. Confidence Intervals
- 15.1. Ranges for Parameters
- 15.2. Confidence Interval for the Mean
- 15.3. Interpreting Confidence Intervals
- 15.4. Manipulating Confidence Intervals
- 15.5. Margin of Error
- Chapter Summary
- 16. Statistical Tests
- 16.1. Concepts of Statistical Tests
- 16.2. Testing the Proportion
- 16.3. Testing the Mean
- 16.4. Significance versus Importance
- 16.5. Confidence Interval or Test?
- Chapter Summary
- 17. Comparison
- 17.1. Data for Comparisons
- 17.2. Two-Sample z-test for Proportions
- 17.3. Two-Sample Confidence Interval for Proportions
- 17.4. Two-Sample T-test
- 17.5. Confidence Interval for the Difference between Means
- 17.6. Paired Comparisons
- Chapter Summary
- 18. Inference for Counts
- 18.1. Chi-Squared Tests
- 18.2. Test of Independence
- 18.3. General versus Specific Hypotheses
- 18.4. Tests of Goodness of Fit
- Chapter Summary
- Statistics In Action Rare Events
- Statistics In Action Data Mining Using Chi-Squared
- pt. FOUR Regression Models
- 19. Linear Patterns
- 19.1. Fitting a Line to Data
- 19.2. Interpreting the-Fitted Line
- 19.3. Properties of Residuals
- 19.4. Explaining Variation
- 19.5. Conditions for Simple Regression
- Chapter Summary
- 20. Curved Patterns
- 20.1. Detecting Nonlinear Patterns
- 20.2. Transformations
- 20.3. Reciprocal Transformation
- 20.4. Logarithm Transformation
- Chapter Summary
- 21. Simple Regression Model
- 21.1. Simple Regression Model
- 21.2. Conditions for the SRM
- 21.3. Inference in Regression
- 21.4. Prediction Intervals
- Chapter Summary
- 22. Regression Diagnostics
- 22.1. Changing Variation
- 22.2. Outliers
- 22.3. Dependent Errors and Time Series
- Chapter Summary
- 23. Multiple Regression
- 23.1. Multiple Regression Model
- 23.2. Interpreting Multiple Regression
- 23.3. Checking Conditions
- 23.4. Inference in Multiple Regression
- 23.5. Steps in Fitting a Multiple Regression
- Chapter Summary
- 24. Building Regression Models
- 24.1. Identifying Explanatory Variables
- 24.2. Collinearity
- 24.3. Removing Explanatory Variables
- Chapter Summary
- 25. Categorical Explanatory Variables
- 25.1. Two-Sample Comparisons
- 25.2. Analysis of Covariance
- 25.3. Checking Conditions
- 25.4. Interactions and Inference
- 25.5. Regression with Several Groups
- Chapter Summary
- 26. Analysis of Variance
- 26.1. Comparing Several Groups
- 26.2. Inference in Anova Regression Models
- 26.3. Multiple Comparisons
- 26.4. Groups of Different Size
- Chapter Summary
- 27. Time Series
- 27.1. Decomposing a Time Series
- 27.2. Regression Models
- 27.3. Checking the Model
- Chapter Summary
- Statistics In Action Analyzing Experiments
- Statistics In Action Automated Modeling.
- Other information
-
- Includes bibliographical references and index.
- ISBN
-
- 9780321836519 (alk. paper)
- 0321836510 (alk. paper)
- Identifying numbers
-
- LCCN: 2012005942
- OCLC: 780063824
- OCLC: 780063824