Book , Print in English

A modern approach to quantum mechanics

John S. Townsend.
  • Sausalito, Calif. : University Science Books, ©2012.
  • 2nd ed.
  • xvi, 571 pages : illustrations ; 27 cm
  • Eisenhower C Level
    QC174.12.T69 2012 c. 1
    Checked out
    Checked out, Due: Nov 4 2019
    Another patron is currently using this item. Use BorrowDirect to request a different copy. For additional help, ask a library staff member.
  • Eisenhower M Level Textbooks on Reserves
    QC174.12.T69 2012 c. 1
    Available
Subjects
Genre
  • Textbooks.
Contents
  • note: 1.1. Original Stern-Gerlach Experiment
  • 1.2. Four Experiments
  • 1.3. Quantum State Vector
  • 1.4. Analysis of Experiment 3
  • 1.5. Experiment 5
  • 1.6. Summary
  • Problems
  • 2.1. Beginnings of Matrix Mechanics
  • 2.2. Rotation Operators
  • 2.3. Identity and Projection Operators
  • 2.4. Matrix Representations of Operators
  • 2.5. Changing Representations
  • 2.6. Expectation Values
  • 2.7. Photon Polarization and the Spin of the Photon
  • 2.8. Summary
  • Problems
  • 3.1. Rotations Do Not Commute and Neither Do the Generators
  • 3.2. Commuting Operators
  • 3.3. Eigenvalues and Eigenstates of Angular Momentum
  • 3.4. Matrix Elements of the Raising and Lowering Operators
  • 3.5. Uncertainty Relations and Angular Momentum
  • 3.6. Spin-1 Eigenvalue Problem
  • 3.7. Stem-Gerlach Experiment with Spin-1 Particles
  • 3.8. Summary
  • Problems
  • 4.1. Hamiltonian and the Schrödinger Equation
  • 4.2. Time Dependence of Expectation Values
  • 4.3. Precession of a Spin-; Particle in a Magnetic Field
  • 4.4. Magnetic Resonance
  • 4.5. Ammonia Molecule and the Ammonia Maser
  • 4.6. Energy-Time Uncertainty Relation
  • 4.7. Summary
  • Problems
  • 5.1. Basis States for a System of Two Spin-2 Particles
  • 5.2. Hyperfine Splitting of the Ground State of Hydrogen
  • 5.3. Addition of Angular Momenta for Two Spin- z Particles
  • 5.4. Einstein-Podolsky-Rosen Paradox
  • 5.5. Nonquantum Model and the Bell Inequalities
  • 5.6. Entanglement and Quantum Teleportation
  • 5.7. Density Operator
  • 5.8. Summary
  • Problems
  • 6.1. Position Eigenstates and the Wave Function
  • 6.2. Translation Operator
  • 6.3. Generator of Translations
  • 6.4. Momentum Operator in the Position Basis
  • 6.5. Momentum Space
  • 6.6. Gaussian Wave Packet
  • 6.7. Double-Slit Experiment
  • 6.8. General Properties of Solutions to the Schrodinger Equation in Position Space
  • 6.9. Particle in a Box
  • 6.10. Scattering in One Dimension
  • 6.11. Summary
  • Problems
  • 7.1. Importance of the Harmonic Oscillator
  • 7.2. Operator Methods
  • 7.3. Matrix Elements of the Raising and Lowering Operators
  • 7.4. Position-Space Wave Functions
  • 7.5. Zero-Point Energy
  • 7.6. Large-n Limit
  • 7.7. Time Dependence
  • 7.8. Coherent States
  • 7.9. Solving the Schrodinger Equation in Position Space
  • 7.10. Inversion Symmetry and the Parity Operator
  • 7.11. Summary
  • Problems
  • 8.1. Multislit, Multiscreen Experiment
  • 8.2. Transition Amplitude
  • 8.3. Evaluating the Transition Amplitude for Short Time Intervals
  • 8.4. Path Integral
  • 8.5. Evaluation of the Path Integral for a Free Particle
  • 8.6. Why Some Particles Follow the Path of Least Action
  • 8.7. Quantum Interference Due to Gravity
  • 8.8. Summary
  • Problems
  • 9.1. Elements of Wave Mechanics in Three Dimensions
  • 9.2. Translational Invariance and Conservation of Linear Momentum
  • 9.3. Relative and Center-of-Mass Coordinates
  • 9.4. Estimating Ground-State Energies Using the Uncertainty Principle
  • 9.5. Rotational Invariance and Conservation of Angular Momentum
  • 9.6. Complete Set of Commuting Observables
  • 9.7. Vibrations and Rotations of a Diatomic Molecule
  • 9.8. Position-Space Representations of L in Spherical Coordinates
  • 9.9. Orbital Angular Momentum Eigenfunctions
  • 9.10. Summary
  • Problems
  • 10.1. Behavior of the Radial Wave Function Near the Origin
  • 10.2. Coulomb Potential and the Hydrogen Atom
  • 10.3. Finite Spherical Well and the Deuteron
  • 10.4. Infinite Spherical Well
  • 10.5. Three-Dimensional Isotropic Harmonic Oscillator
  • 10.6. Conclusion
  • Problems
  • 11.1. Nondegenerate Perturbation Theory
  • 11.2. Degenerate Perturbation Theory
  • 11.3. Stark Effect in Hydrogen
  • 11.4. Ammonia Molecule in an External Electric Field Revisited
  • 11.5. Relativistic Perturbations to the Hydrogen Atom
  • 11.6. Energy Levels of Hydrogen
  • 11.7. Zeeman Effect in Hydrogen
  • 11.8. Summary
  • Problems
  • 12.1. Indistinguishable Particles in Quantum Mechanics
  • 12.2. Helium Atom
  • 12.3. Multielectron Atoms and the Periodic Table
  • 12.4. Covalent Bonding
  • 12.5. Conclusion
  • Problems
  • 13.1. Asymptotic Wave Function and the Differential Cross Section
  • 13.2. Born Approximation
  • 13.3. Example of the Born Approximation: The Yukawa Potential
  • 13.4. Partial Wave Expansion
  • 13.5. Examples of Phase-Shift Analysis
  • 13.6. Summary
  • Problems
  • 14.1. Aharonov-Bohm Effect
  • 14.2. Hamiltonian for the Electromagnetic Field
  • 14.3. Quantizing the Radiation Field
  • 14.4. Hamiltonian of the Atom and the Electromagnetic Field
  • 14.5. Time-Dependent Perturbation Theory
  • 14.6. Fermi's Golden Rule
  • 14.7. Spontaneous Emission
  • 14.8. Cavity Quantum Electrodynamics
  • 14.9. Higher Order Processes and Feynman Diagrams
  • Problems.
Other information
  • Includes index.
  • Includes bibliographical references and index.
ISBN
  • 9781891389788 (alk. paper)
  • 1891389785 (alk. paper)
Identifying numbers
  • LCCN: 2011049655
  • OCLC: 768607168
  • OCLC: 768607168