Book , Online in English

Neural machine translation

Philipp Koehn.
  • Cambridge : Cambridge University Press, 2020.
  • 1 online resource (xiv, 393 pages) : digital, PDF file(s).
  • Deep learning is revolutionizing how machine translation systems are built today. This book introduces the challenge of machine translation and evaluation - including historical, linguistic, and applied context -- then develops the core deep learning methods used for natural language applications. Code examples in Python give readers a hands-on blueprint for understanding and implementing their own machine translation systems. The book also provides extensive coverage of machine learning tricks, issues involved in handling various forms of data, model enhancements, and current challenges and methods for analysis and visualization. Summaries of the current research in the field make this a state-of-the-art textbook for undergraduate and graduate classes, as well as an essential reference for researchers and developers interested in other applications of neural methods in the broader field of human language processing.
Other information
  • Title from publisher's bibliographic system (viewed on 01 Jun 2020).
Additional form
  • 9781108608480 (ebook)
  • Alternate version: 9781108497329

Virtual Shelf Browse

See similar material that would be shelved with this item, across all Hopkins libraries.